Mechanistic Studies into the Selective Production of 2,5-furandicarboxylic Acid from 2,5-bis(hydroxymethyl)furan Using Au-Pd Bimetallic Catalyst Supported on Nitrated Carbon Material
نویسندگان
چکیده
Aerobic oxidation of bio-sourced 2,5-bis(hydroxymethyl)furan (BHMF) to 2, 5-furandicarboxylic acid (FDCA), a renewable and green alternative petroleum-derived terephthalic (TPA), is great significance in chemicals production. Herein, hierarchical porous bowl-like nitrogen-rich (nitrated) carbon-supported bimetallic Au-Pd nanocatalysts (AumPdn/ N-BNxC) with different nitrogen content bimetal nanoparticle sizes were developed employed for the highly efficient aerobic BHMF FDCA sodium carbonate aqueous solution. The reaction pathway catalytic went through steps BHMF→HMF→HMFCA→FFCA→FDCA. Kinetics studies showed that activation energies BHMF, HMF, HMFCA, FFCA 58.1 kJ·moL−1, 39.1 129.2 56.3 respectively, indicating intermediate HMFCA was rate-determining step. ESR tests proved active species superoxide radical. Owing synergy between carbon support nanoparticles, Au1Pd1/N-BN2C exhibited conversion 100% yield 95.8% under optimal conditions. Furthermore, good stability reusability. This work provides versatile strategy design heterogeneous catalysts production from BHMF.
منابع مشابه
Nitrogen functionalized carbon nanostructures supported Pd and Au-Pd NPs as catalyst for alcohols oxidation
Two different carbon nanotubes (CNTs) PR24-PS and Baytubes were functionalized by oxidation with nitric acid and further amination with gaseous NH3. Thus Au and Au-Pd nanoparticles were prepared by PVA/NaBH4 system and anchored on the surface of pristine CNTs and NCNTs (Nitrogen functionalized carbon nanotubes). TEM analysis revealed that the introduction of nitrogen functionalities improves th...
متن کاملNanosized Pd-Au bimetallic phases on carbon nanotubes for selective phenylacetylene hydrogenation.
Palladium (Pd)-catalyzed selective hydrogenation of alkynes has been one of the most studied hydrogenation reactions in the last century. However, kinetic studies conducted to reveal the catalyst's active centers have been hindered because of dynamic surface changes on Pd during the reaction. In the present study, bimetallic Pd-Au nanoparticles supported on carbon nanotubes have been synthesize...
متن کاملChitosan supported bimetallic Pd/Co nanoparticles as a heterogeneous catalyst for the reduction of nitroaromatics to amines
A new bimetallic nanocomposite of chitosan was prepared. Pd and Co nanoparticles were deposited on chitosan to produce a new heterogeneous recyclable catalyst for use in the bimetallic catalytic reduction reaction. The catalyst was characterized with common analysis methods for nanocomposites including Energy Dispersive X-Ray Spectroscopy, X-Ray Diffraction pattern, Thermal Gravimetric Analysis...
متن کاملRemoval of Anionic Dyes (Direct Blue 106 and Acid Green 25) from Aqueous Solutions Using Oxidized Multi-Walled Carbon Nanotubes
Background and purpose:The presence of dyes in wastewaters may cause serious problems for the environment because of their high toxicity to aquatic organisms and unfavorable aesthetical impact. In the present study, multi-walled carbon nanotubes (MWCNTs) were used for removal of anionic dyes Direct Blue 106 (DB106) and Acid Green 25 (AG25), from water samples. Materials and Methods:MWCNTs were ...
متن کاملHydrodeoxygenation of Acetic Acid Using Monometallic and Bimetallic Catalysts Supported on Carbon
Heterogeneous catalytic hydrodeoxygenation (HDO) of biomass-derived feeds is a deoxygenation process that is of highly interest. Carboxylic acids are one of the main components of bio-oils and acetic acid (AA) is one of the most abundant of these carboxylic acids. This acid is rich in oxygen, therefore there is a lot of research for to produce fuel and other valuable chemicals such as ethanol. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Catalysts
سال: 2023
ISSN: ['2073-4344']
DOI: https://doi.org/10.3390/catal13020435